
Applied Topology
Network Theory and Persistent Homology

Abstract

In these notes we will explore ideas in applied topology, with a focus on persistent homology.
The goal of these notes is to quickly capture the main idea behind and how they are being used in
practice. Proofs are largely avoided but not completely absent. This is done so someone without a
math background is not deterred from following along. Most sections of the notes have an orange box
associated with them which summarize the key ideas in a very high level manner. Pink boxes are used
to highlight examples which largely focus on biological applications. These notes are still a work in
progress and will be updated periodically.

1 Graphs
In biology we often like to study relationships between different kinds of things such as proteins, cells or
species. Over the years network theory has played a central role in studying questions that we may have
about how things are related. A graph or network, is simply a collection of points connected by lines. In
biological networks, the object of interest tends to be molecules like DNA, RNA, proteins, cells, or species
and we draw a line between these points if they have some kind of relationship.What makes networks so
incredibly useful is their simplicity and flexibility to take on almost any situation. Before looking at a
formal definition of network, consider some of how networks are used to solve problems in biology.

Example 1.1. Protein-Protein Interaction Networks consist of proteins as the vertices and the
edges denote some kind of interaction between the proteins in the physical environment.

Example 1.2. Gene Regulatory Networks consist of genes as the nodes. An edge from gene A to
gene B indicates that the protein product of A regulates the expression of gene B.

Example 1.3. Sequence Similarity Networks captures the sequence similarity between proteins or
genes. Here, the vertices are the genes or proteins and the edges denote the similarity between two
given nodes.

Example 1.4. Gene Co-expression Networks consist of genes as nodes and the edges between them
denote co-expression.

Definition 1.5. A graph is a pair G = (V,E), where V is a set of vertices and E is a set of paired vertices
called edges. A graph is connected if there is path from any point to any other point. A graph is complete
if every pair of distinct vertices is connected by a unique edge.

But simply being able to represent a problem as a network is not useful in itself, we want to be able
to gain insight into our problem. For example, are certain vertices more important than others? Are some
points closer to each other than others? Are there any clusters? Graphs have some general properties that
are helpful in answering questions we might have.

Definition 1.6. The degree of vertex i, denoted di, is given by the number of edges adjacent to it. In a
directed graph, we can further divide degrees into indegree and outdegree. The indegree is the number of
edges pointing to the said vertex, whereas the out degree refers to the number of edges leading away from
the vertex.

1



Definition 1.7. Density is the ratio between the number of edges in a graph to the the number of possible
edges in the graph. A graph is called dense if E ≃ V k, where 1 < k < 2 and sparse if k ≤ 1.

Definition 1.8. The clustering coefficient measures the ability of a vertex to form tight communities or
clusters. The clustering coefficient is defined as C = 2E

k(k−1)
, where k is the degree of the vertex and E is

the number of edges between the k neighbors.

Definition 1.9. The distance between two nodes is the length of the shortest path between them.

Certain vertices in our graph maybe more connected and thus can play an oversized influence on the
network. These types of nodes, help us answer questions that we may have like: Are there any central hubs
in the network? Which node connects different communities in our network? To answer these questions
we can use the notion of centralities.

Definition 1.10. The degree centrality of vertex is simply the degree for the said node. The closeness
centrality is defined as Cc =

1∑
di

. The betweenness centrality is defined as Cb =
axy(i)

axy
, where axy is the

total number shortest nodes and axy(i) is the number of those paths which pass through the node i. The
eccentricity centrality is geven by Ce =

1
max(d(i,j))

.

Example 1.11. The above graph can be represented by the following adjacency matrix

G =


0 1 1 0 0 0
1 0 1 0 0 0
0 1 0 1 1 1
1 0 1 0 1 1
0 0 1 1 0 0
0 0 1 1 0 0


In this graph, vertex C has a degree of dC = 4, where as dA = 2. The distance between these
two points is the shortest path between them and hence d(A,C) = 2. If we focus on C, it has 4
neighbors (as indicated by the degree earlier) and so the maximun number of edges between its
neigher would be 4(4−1)

2
= 6 but only two exist (between D and E, D and F ). Therefore, the

clustering coefficent is 2
6
= .33.
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2 Spaces and Complexes
Although graphs are useful in many applications, we often times want to capture more general relation-
ships. For example, consider a scenario where three friends go to lunch. If we were to represent this
by a graph and each friend went to lunch with the other two, the best we could do is the following:
G = {A,B,C,AB,BC,AC}. But, what if they all went to lunch together? This graph is not able to
capture that relationship but if we could simply fill the triangle in to denote that relationship, our problem
would be resolved. In other words, G = {A,B,C,AB,BC,AC,ABC}. One way to do this is through
simplicial complexes.

Definition 2.1. Given k + 1 points in Rd, we say that u0, u1, · · · , uk are affinely independent if and only
if k vectors ui − u0 are linearly independent. A k-simplex is the convex hull of k+1 affinely independent
points denoted σ = conv{u0, u1, · · · ,uk}

This is a bit of an abstract definition. One way to visualize what is happening is to think of our k + 1
points as distinct pegs. Then the convex hull is like putting a rubber sheet over these pegs. What this
allows us to do is to define points, lines, triangles, tetrahedron, and so on. A simplical complex is just a
collection of these shapes glued together to form a more complex structure.

Definition 2.2. A simplicial complex is a finite collection of simplices k such that if σ ∈ k and τ ∈ σ
then τ ∈ k. The dimension of a simplicial complex K is the the maximum of the dimensions of all of its
simplices and we denote it dim(K). A graph is also called a 1-dimensional simplical complex.
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Example 2.3. One way to get a simplical complex is to first build a graph and then re-
place all complete subgraphs with a simplex. Consider the graph in the figure above, G =
{A,B,C,D,AB,BA,CA,CD}. The vertices A,B,C form a complete graph and so we can re-
place this with the simplex ABC. Replacing all complete graphs forms a clique complex. In our
example, G, turn into the clique complex X(G) = {A,B,C,D,AB,BA,CA,CD,ABC}

Example 2.4. In neuroscience, we often times want to study coactivity. For example, we might ask
questions like: What neurons are firing at the same time? What regions of the brains show similar
activation patterns? A concurrence complex allows us to answer these questions by capturing the
relationship between two variables. We can encode this relationship in a binary matrix where the
row are one variable and the columns another. Non-zero entries correspond to the relationship
between the two variables.

Example 2.5. Sometimes, the relationships we have between our objects of interest due not meet
the full definition of a simplical complex that all σ is a simplex and τ ⊂ σ, then τ is also a simplex.
If this is a case, the structure is called hypergraph and are harder to work with computationally. To
get around this, we can take the complement of the our original structure.
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Definition 2.6. The c-vector of K is the vector cK = (c0, c1, · · · , ci) where ci is the number of simplices
of dimension i for all 0 ≤ i ≤ dim(K).

Definition 2.7. Let τ, α ∈ K with τ ⊆ α. Then we say that τ is the face of α and α is the coface of τ .
Furthermore, we define dim(α)− dim(τ) to be the codimension of τ with respect to α.

Suppose we are given some collection of points. How do we know if two points or a cluster of points is
near each other? The simplest way for us to answer this question is by taking out a ruler and measuring the
distance between them. In fact, we can endow the entire space where the points exist with a mathematical
structure called a metric space.

Definition 2.8. A set M along with a metric function d is called a metric space is the following holds

1. d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

4. d(x, y) > 0 for all x, y ∈ M

Example 2.9. The most important metric space is the Euclidean space Rn which is a collection of
n-tuples X = {(x1, x2, · · · , xn)|xi ∈ R} equipped with the standard distance metric

d(X,Y ) =

√√√√ n∑
i=0

(xi − yi)2

Example 2.10. Create an alphabet denoted Σ. We will call its elements letters. Then the Hamming
distance between two words of length n is simply the number of positions that where the letters
differ. The Hamming distance is an important example of metric spaces in coding theory and can
also apply to biology. For example, let Σ = {A,C, T,G}, then dH = {ACGT,ACAA} = 2

Example 2.11. Gene expression can be considered to be a point in Rn and a typical metric that is
applied is the Pearson Correlation.

Metric spaces are a very useful tool but they are too strict. To get around this rigidity, we can loosen
our requirements for what it means to be near by completely getting rid of the notion of a distance. These
two structures that we explore end up being central to many ideas in not only mathematics but also in
statistics and biology.

Definition 2.12. Let X be a set and τ ∈ X . Then the pair (X, τ) is a topological space if

1. ϕ,X ∈ τ

2. infinite unions of the elements of τ are contained within τ

3. finite intersections of the elements of τ are in τ

We call τ a topology and the elements of this topology are called open sets.

The notion of a metric space is much more down to earth but topological spaces will allow us the
flexibility to study spaces in ways that the former will not. But we do not have to choose between the two
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and in fact the types of topological spaces we will be concerned with will be metrizable spaces. Theses
are topological spaces which naturally arise from metric spaces.

A metric space measures nearness between points by measuring there distance. We abstract this
to a topological space which is a more general structure that measures nearness for a collection
of points. These points have some sort of connections which make them distinct from a different
set of points that also have connections. Although topological spaces are a nice structure, they are
not practical in an applied setting where we are chiefly concerned with computations. One way to
work around this is to restrict ourselves to only discrete structures and glue them together to make
larger structures. This is the idea behind a simplicial complex. A simplicial complex is collection
of points, lines, and triangles glued together to represent some underlying topological space. These
structures are called graphs when we restrict ourselves to only lines and points, and are a common
tool in applications. Furthermore, simplicial complexes are a generalization of a graph which easily
lends them to applications.

3 Simple Homotopy
We have defined several structures up to this point and how to create these structures from data along with
some numbers that can be associated with them. The next question, we want to ask is how can we tell
when two things are the same? One way to do this is to start with a simplicial complex and then morph
into another complex. If this is possible, then these to simplicial complexes are the same. We fomralize
this below.

Definition 3.1. Let K be simplicial complex and consider a pair of simplices {σ(p−1), τ p} where σ(p−1)

only has one coface, τ . Then the simplicial complex K − {σ(p−1), τ p} is called an elementary collapse,
denoted K ↘ K − {σ(p−1), τ p}. Similarly, an elementary expansion, denoted K ↗ K ∪ {σ(p−1), τ p}, is
the addition of such a pair. For both cases, the pair {σ(p−1), τ p} is called a free pair.

Definition 3.2. Let K and L be simplicial complexes. We say that K and L have the same simple ho-
motopy type, denoted K L, if there is a series of elementary collapses and expansions that can take us
between the two.

Having a notion of sameness is nice but it is not practical to do a series of collapses and expansions
to determine this. So, the immediate question that we want to answer now is: What things do not change
between two complexes that are simple homotopy equivalent?

Definition 3.3. Let K and L be simplicial complexes and let α be a function that associates a real value
to the simplicial complexes. We call α an invariant if α(K) = α(L) whenever K L.

Definition 3.4. Let K be a simplicial complex and ci(K) be the c-vector. Then we define the Euler
characteristic of K to be

χ(K) =
n∑

i=0

(−1)ici(K)
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Example 3.5. A classic example of an invariant is the Euler characteristic. To understand this
consider a collection of points. We begin with n things but if we add an edge, we are left we only
n − 1 things. So it seems fair to say that, if we have one dimensional points, we count that as +1
but soon as we connect two points by bringing in an edge, we count it as −1. But soon as we create
a triangle with a hole, notice that we do not lose any components. If we persevere on, we see that
soon as the hole is filled, we can give it a weight of +1, which undoes our previous ’mistake’. This
process is shown in the figure above, where we start with four points and so have 4 components.
When we add add two edges, we are left with 2 components but when we complete the triangle by
adding a third edge, by our rule, we have only 1 component. But we can clearly see that there are
two components. This discrepancy is remedied in the fourth panel where the triangle is filled in and
our result is updated to 2. This is the Euler characteristic, χ(K) = 4− 3 + 1 = 2

Theorem 3.6. If K ∼ L, then χ(K) = χ(L).

Definition 3.7. A simplicial complex, K, is collapsible if there exists a series of only collapse such that

K = K0 ↘ K1 ↘ K2 ↘ · · · ↘ Kn−1 ↘ Kn = {v}

Simple homotopy is a way to go from one simplicial complex to another through a series of collapses
and expansions of the simplices. But this still leaves the question of what remains the same under
these operations. It is not practical to find a series of collapses and expansion everytime we want to
show that two complexes are equivalent. We call such things invariants and generalize counting to
the Euler Characteristic.
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4 Homology
From looking at our examples from simple homotopy, it may have occurred to some that there seems to
be some preservation of the holes under collapses and expansions. Is this true? If so can we distinguish
different spaces by counting the number of holes in a simplicial complex? This is the idea behind homol-
ogy where we are able to count not only the number of holes but also the type of hole. To be able to do
this we need the notion of a vector space.

Definition 4.1. A field is a set F of numbers such that if a, b ∈ F, then a+ b, a− b, ab, a/b are also in F.

Definition 4.2. A vector space is a set V over a field F paired with the operations of vector addition and
scalar multiplications such that the following axioms are satified:

1. (u+ v) + w = u+ (v + w) for all u, v, w ∈ V

2. There is a vector denoted 0⃗ such that u+ 0⃗ = u. We call this the zero vector.

3. For all vectors v ∈ V , there is another vector in V such that v + (−v) = 0⃗.

4. (ab)u = a(bu) for all a, b ∈ F and u ∈ V .

5. (a+ b)u = au+ bu and a(u+ v) = au+ av for all a, b ∈ F and u, v ∈ V .

6. 1u = u for all u ∈ V .

It may not be immediately obvious why we need vector spaces to characterize holes in topological
spaces. Consider any shape with a single hole. In each of these, it seems like the sequence of edges and
vertices seem to define the hole. But if we were to consider any sequence of simplices, they should detect
exactly one hole but this is not necessarily the case. Some of these sequences may be duplicates of other
sequences and others may not detect holes at all. The notion of a vector space over allows us to work
around these issues.

Definition 4.3. Let X = {e1, e2, · · · , e3, en} be a set of n distinct elements. The vector space, denoted Kn

over the field F2 generated by X is given by the linear combination Kn = {c1e1 + c2e2 + · · ·+ cnen : ci ∈
{0, 1}}. The elements of set X are called the basis elements and n is the dimension of the vector space.

Example 4.4. Consider the simplicial complex shown below in figure 4. The ci vectors listed in the
image, generate the following three vector spaces: K4 = {A,B,C,D,A+B,A+ C,A+D,B +
C,B +D,C +D,A+B + C,A+B +D,B + C +D,A+ C +D,A+B + C +D}
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Definition 4.5. Any element of a vector space generated by a collection of simplices is called a chain.

Definition 4.6. A linear transformation between two vector spaces is a map A : Kn −→ Km such that for
any two elements v, v′ ∈ Kn the following conditions hold:

1. A(v + v′) = A(v) + A(v′)

2. T (αv) = αA(v) for any scalar α.

Definition 4.7. The kernal of a linear transformation is defined by all elements that maps to the zero vector
or in other words,

ker(A) = {x ∈ Kn : A(v) = 0}

. The dimension of of the kernal is called the nullity and denoted null(A). The image of the linear
transformation A between two vector spaces is given by

Im(A) = {y ∈ Km : ∃x ∈ Kn such that A(x) = y}

. The dimension of the image is called the rank of A and denoted rank(A).

Theorem 4.8. Let A be a linear transformation between a vector space of size n to one of size m. Then
rank(A) + null(A) = n.

Since all linear transformations can be represented as matrices, putting A into row echelon form, does
not change the rank. In fact, if A is in row reduced form, then the rank of A is the number of non-zero
rows.

But notice that in our example, we only have one hole, yet our vector space would count two. To work
around this we need to develop the notion of a boundary operator which will allow us to take a simplex
and compute it boundary.

Definition 4.9. Let K be a simplicial complex. Then partition K into sets of simplices of size i, denoted
by Ki. The sequence of vector spaces generated by these partitions along with a linear transformation
between them is called a chain complex.

The linear transformation is called a boundary operator and defined as follows.

Definition 4.10. Let σ ∈ Km and σ = σi0σi1 · · ·σim . For m ≥ 1, the boundary operator ∂m : Kcm −→
Kcm−1 is given by ∂m(σ) =

∑
0≤j≤m σ − σij =

∑
0≤j≤m σi1σi1 · · · σ̂ij · · ·σim , where σ̂ij is the simplex

being excluded.

Definition 4.11. The i-th unreduced homology of K is the vector space

Hi(K;F2) = Knull(∂i)−rank(∂i+1)

The i-th Betti number is given by

bi(K;F2) = null(∂i)− rank(∂i+1)

Often time we will shorten Betti numbers to just bi(K). The betti number is going to play an important
role as an invariance when we begin to consider applications. There is also a nice relationship between the
Euler characteristic and Betti numbers.

Theorem 4.12. Let K and L be simplicial complexes. If K L, then bi(K) = bi(L).
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5 Persistence Homology
We have spent the last few sections on developing the notion of nearness and sameness but how can
we apply this to problems in science? To answer this question, we need to first figure out how to build
simplicial complexes from data.

In real world applications, we are often give a finite collection of points in Rn and so we can equip this
with some distance function and get a finite metric space. If we want to be able to leverage the tools we
discussed in earlier sections, we need to somehow abstract this to a topological space. This is formalized
in the below.

Definition 5.1. Let X ⊂ Rn be finite subspace and fix ϵ > 0. The union of balls is the union⋃
x∈X

Bϵ(x) ⊂ Rn

As discussed earlier, this is not a useful structure for computation. We want to develop this idea of a
union of balls in terms of a simplicial complexes.

Definition 5.2. Let X ⊂ Rn be finite subspace and fix ϵ > 0. The Cech complex Cϵ(X, dX) is an abstract
simplicial complex where the vertices are the points in X and a k-simplex is created when a subset of
points of X satisfy ⋂

i

Bϵ(vi) ̸= ∅

The cech complex allows us to assign a simplicial complex to a metric space but determining when an
intersection of ϵ-balls is non empty is not an easy task for higher dimensions. To work around this, we can
use the idea that a graph is a one dimensional simplicial complex to create a computational more efficient
simplicial complex for a metric space called the Vietoris-Rips complex.

Definition 5.3. Consider a finite metric space (X, dX) and fix ϵ > 0. The Vietoris-Rips complex V Rϵ(X, dX)
is an abstract simplicial complex where the vertices ar the points in X and a k-simplex is created when
dX(vi, vj) ≤ 2ϵ for all i ≤ i, j ≤ k.

Lemma 5.4. Let X ⊂ Rn be finite subspace and fix ϵ > 0. The the following inclusion holds

Cϵ(X, dX) ⊆ V Rϵ(X, dX) ⊆ C2ϵ(X, dX)

This leads us naturally to another question. Given a collection of points, what is the correct choice of
ϵ? The answer to this is that we do not have to choose a single value and this is where the first half of the
name persistent homology comes from. The general idea is that we start with a collection of points and
choose some interval of values [ϵ0, ϵn] and create a sequence of complexes called a filtration.

Definition 5.5. Let K be a simplical complex. Then a filtration of K is a sequence of complexes that
begin with the empty complex and end with the completed complex,

∅ ⊂ K1 ⊂ K2 ⊂ · · ·Kn = K
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The idea of a filtration is key to computing topological features in our data. Given this sequence of
simplicial complexes, we can compute a the homology groups at each step.

Definition 5.6. A barcode is a multiset of intervals, [x, y) ∈ R, which measures the the length a feature
persists through each filtration.

Example 5.7. Can we detect holes in logic? A paper by Tymochko et. al tries to do just that by using
persistence homology to compare three statements: A valid statement, A circular invalid statement,
and a random statement where the structure was not obvious. This text was embedded into a word
vector point cloud. This was was turned into a one dimensional time series by computing the dot
product of each word vector with a fixed random vector. To capture the dynamics of this time series,
time delayed embedding is performed which can then be used to calculate the persistent homology.
The resulting persistence diagram identifies two circular features for the valid and invalid argument
which could not be identified using traditional methods.

We can generalize the concept of persistence to a setting where the inclusion of a filtration do not go
in one direction. For example, consider a metric space where the points have some sort of order. Let this
be denoted by X = x1, x2, x3, · · · and let Xk denote the subset of X consisting of the first k points. If we
were too measure the distance between the subsets and X , then the subset Xi+1 will be at least as close to
the original set as Xi.

Persistence homology is the process of taking a collection of points and defining a way to create a
sequence of simplicial complexes and computing the homology at each step.

6 Topological Descriptors and Statistics

7 Machine Learning
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