Command Line Basics

Hanan Salim

A command line or a terminal is a way to interact with a computer via text.This may
seem archaic but knowing how to use the command line can make doing your job much easier
compared to the GUI alternative. Furthermore, learning a handful of commands can take
you quite far. If we open up a command line prompt, we get something like this:

The first line tells us the user(hisal in my case) and the computer(LAPTOP-NFOMDSTS5)
you are using. The ~ indicates that you are in the home or root directory. Right below that
is a dollar sign, which is where we will enter our commands.

The first command we will introduce helps us answer the question ”"where am 17”7, If
you type pwd and hit enter, you will get the path for your current location, which is like
an address for a file or folder. There are two ways two represent this path. The first way
is called an absolute path, which is the address of your file or folder in relation to the root
directory. The path you see when you type pwd is the absolute path. Another way to write
a path is relative to where you are at that moment. This is called the relative path and we
will see more of it later.

§ pwd
/home/hisal

One of the things that I struggled with early on when learning to use a command line
was figuring out where I was. So, if you are ever lost or confused about where you are just
type in pwd.

Typically, if you want to find some file on your computer you would open up your file
manager and then click the folder or a sequence of folders until you reach said file. To do the
same thing on a command line you would type the command cd followed by the directory
you want to move. For example, in my home directory I have a folder called 'my_folder’,
which I can move into using the cd command.



$ cd my_folder/

~/my_folder
$ |

Notice that we did not type in the absolute path (/home/hisal/my _folder). Since hisal is
the working directory and it contains the folder we want to move into, we can just type the
relative path, i.e ", my_folder’.

We can see what is inside this folder by typing 1s, which will list all of our files and sub-
folders. As we can see in the image below, this folder contains a single file called ’file.txt’.

~/my_folder

We can view the content on this file in several ways. The first way is through the cat
command which will print out the entire file. Type in cat followed by the name of the file
you would like to view.

~/my_folder

[4+]
~+

o X
r+
(g% ]

.i

a 1
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

t
3
3

3

3

3

3.

3.

3

2

3

3

3

3

3.

L

.

3.

3.

3.

3

3.

3.

.2,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa

,Iris-setosa
. ,Iris-setosa
,0.4,Iris-setosa

[=]

OO0 000000D00D00O0O000O0O

FRNMNRENRNWRRNRNRNR

[pS I TVR VI WY N Sy N }

C T
1,3.5,
9,3.0,
7,3.2
6,3.1,
0,3.6,
- 9
6,3.4,
0,3.4,
4,2.9
9,3.1,
4,3.7,
8,3.4
8,3.0,
3,3.0,
8 0
7,4.4,
4,3.9,
.1 5
.7,3.8,
.1,3.8,
.4,3.4
.1 7

M~~~ bW RE ROV RV BB UTWwb e

If the file is short, this is okay but often files are very large and we do not need to view
them in their entirety. In this case, we can view the top portion of the file using the head
command and the bottom portion of the file using the tail command.



~/my_folder

o
—h

o
FRRERRRRRRRPR -
- - - - - - - - - - — |

>
J rt

.2,Iris-setosa
,Iris-setosa
,Iris-setosa
.2,Iris-setosa
.2,Iris-setosa
.4,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa

P

vipupap~lkuiwpypmD

$
5
__.-I_
__.-l.
5
5.
4.
5.
4.
4.

oMo ~NOR T
WM W W W W W Www
RFObhROOREMNOWV

=MW

~/my_folder

—
=h

i e unen .
P —

fu
RN OMN~NWOREEREID

WL W MWW WM W
.

OROUVIOWMN~NE

,Iris-virginica
,Iris-virginica
,Iris-virginica
,Iris-virginica
,Iris-virginica
,Iris-virginica
,Iris-virginica
.3,Iris-virginica
.8,Iris-virginica

VIO OO O VT O 6a
WM VW~ 00w

Commands in unix tend to have options that allow a user to change or extend the behavior
of the command. The head/tail command comes with an option -n, which allows a user to
specify how many lines should be shown. You can use this line by typing tail -n3, where
3 is the number of lines we want to see.

~/my_folder

.2,Iris-setosa
.2,Iris-setosa

Although we may not be interested in viewing the entire file, we may still want to know
how many lines, word, or characters are in the file. We can find out by using wc followed
by the file name. In the image below, we can see that file.txt has 151 lines, 150 words and
4551 characters. Typically the most useful information is the number of lines. We can find
out directly by using wc -1.

~/my_folder
$ wc file.txt

151 150 4551 file.txt

Lets say we want to search for a pattern in a file. In the case of this file, we want to see
all lines that contain the number 5. We can accomplish this by using grep. Type in grep
’5? file.txt, where 5 is the pattern we want to search for and file.txt is the file we
want to search. A useful extension is —w, which allows a user to search for an exact match.
Furthermore, if we want the inverse of our search, we can use grep -v [file name].



~/my_folder

FRRERRRRRRW

file.txt
4,0.2,Iris-setosa
5,0.2,Iris-setosa
4, ,Iris-setosa
.7, ,Iris-setosa
5
5
5
2

-

W W W W W W W

P

ONR&LOORWV

,1.4,0
,1.5,0

.2,Iris-setosa
.1,Iris-setosa

2,Iris-setosa
.2,Iris-setosa

From prior knowledge, I know that this file contains three different types of Iris (Iris-
setosa, Iris-versicolor, and Iris-virginica) but I am only interested in setosa. In fact, I want
to know how many lines contain this flower. We can find out by combining our grep and
wc -1 using the pipe command. We will use the grep like usual and then type | followed
by wc —1. The symbol | is the pipe command, it takes the output of the first command
and pipes it as an input for the second command. We can use the pipe command to string
together as many commands as we like.

~/my_folder
"setosa’' file.txt | wc -1

Typical file formats are separate columns by a delimiter. If we are only interested in
certain columns we can use the cut command. There are several important things we must
tell the command. First, what is the symbol that separates our columns? This may be a
space, a tab, or a comma. We can specify the delimiter by using —d followed by delimiter.
We also need to say what column(s) we are interested in. We can specify this by using —f
followed by the column(s) of interest. Several examples of its use are given below.

~/my_folder
§ cut -d, -f5 file.txt | head -n3
Iris-setosa
Iris-setosa
Iris-setosa

~/my_folder
-f1,3 file.txt | head -n3

~/my_folder
f1,3-4 file.txt | head -n3

rRarara

We can save the output of our commands using the carrot symbol, > followed by name
of the output file.

~/my_folder

§ cut -d, -f1,5 file.txt > output.txt




We have learned some useful commands but we still do not know how to do some very
basic tasks like creating new folders and moving files around. Creating folders is done using
the mkdir command followed by the folder name.

~/my_folder

$ mkdir data
~/my_folder

file.txt

Since this folder is empty, lets populate it with a file. Lets try to move the file output.txt
into the folder we just created. We have two options, copy or move. Lets beginning with
copying. This can be done using cp followed by the file we want to copy and then the path
of the directory we want to copy this file into to. This path can be the absolute path or
relative.

~/my_folder
$ cp output.txt data/

~/my_folder
§ 1s data/
output.txt

We can move the file using the mv command. The structure of this command is similar
to the copy command but the behavior is different. The move command will move the file
into a directory but delete the original copy, where as copy will keep it. We can also use mv
to rename files and folders. If we change directories and go into the data folder we created,
we can change the name of output.txt to new.txt.

~/my_folder/data
$ mv output.txt new.txt

~/my_folder/data
$ s
new.txt

Since we have two files with the same content and different names, lets remove one of
them using rm. It is important to know that once you remove a file, there is no going back.
So be careful when deleting files.

~/my_folder/data

$ rm new.txt

We will end where we started by talking about changing directories. In particular how
do we go back? We can specify the absolute path or we can use . ., which takes us up one
level in the hierarchy.



~/my_folder/data

$ pwd
/home/hisal/my_folder/data

~/my_folder/data
§ cd ..

~/my_folder
$ pwd
/home/hisal/my_folder

Notice that when we typed pwd in the first line, we are in the data folder but using cd

. takes us back to my_folder. If we had wanted we could have used the absolute path, cd
/hom/hisal/my folder. Lastly, if we want to go back to the home directory, we can
use ~ symbol instead of the path.

~/my_folder




